Fast Pydantic
-
👉 Without Pydantic, FastAPI would just be another web framework.
-
It’s the reason why FastAPI is so strict, fast, and developer-friendly.
-
👉 Pydantic = Validates & parses data.
-
👉 Depends = Injects reusable logic/resources.
1.What is Pydantic?
Section titled “1.What is Pydantic?”-
Pydantic is a Python library for data validation and settings management using Python type hints.
-
It ensures data coming into your FastAPI app is:
- Valid (correct type, format, constraints).
- Cleaned (converted to the right type).
- Documented (auto-generated OpenAPI schema).
👉 FastAPI internally uses Pydantic models to define request bodies, query params, and response schemas.
2. Why Pydantic in FastAPI?
Section titled “2. Why Pydantic in FastAPI?”- Validation: Rejects invalid requests automatically.
- Serialization: Converts DB objects → JSON.
- Docs Generation: OpenAPI/Swagger knows field types.
- Type Safety: Encourages clean, explicit contracts.
3. Example: Request Validation
Section titled “3. Example: Request Validation”from fastapi import FastAPIfrom pydantic import BaseModel
app = FastAPI()
class Item(BaseModel): name: str price: float in_stock: bool = True
@app.post("/items/")def create_item(item: Item): return {"item": item.dict()}🟢 Valid Input
Section titled “🟢 Valid Input”{ "name": "Laptop", "price": 1200.5}✅ Response:
{ "item": { "name": "Laptop", "price": 1200.5, "in_stock": true }}🔴 Invalid Input
Section titled “🔴 Invalid Input”{ "name": "Laptop", "price": "not-a-number"}❌ FastAPI automatically returns:
{ "detail": [ { "loc": ["body", "item", "price"], "msg": "value is not a valid float", "type": "type_error.float" } ]}4. Example: Response Model
Section titled “4. Example: Response Model”from typing import List
@app.get("/items/", response_model=List[Item])def get_items(): return [ {"name": "Phone", "price": 500, "in_stock": True}, {"name": "Tablet", "price": 800, "in_stock": False} ]✅ Even if your DB returned extra fields, FastAPI trims output based on the Pydantic response model.
5. Advanced Features of Pydantic in FastAPI
Section titled “5. Advanced Features of Pydantic in FastAPI”(a) Field Validation
Section titled “(a) Field Validation”from pydantic import BaseModel, Field
class Product(BaseModel): name: str = Field(..., min_length=3, max_length=50) price: float = Field(..., gt=0, description="Price must be > 0")min_length,max_length,gt(greater than), etc.descriptionauto-shows in Swagger docs.
(b) Nested Models
Section titled “(b) Nested Models”class Category(BaseModel): id: int name: str
class Product(BaseModel): name: str price: float category: Category✅ Allows structured, complex JSON inputs.
(c) Custom Validators
Section titled “(c) Custom Validators”from pydantic import validator
class User(BaseModel): username: str password: str
@validator("password") def validate_password(cls, v): if len(v) < 6: raise ValueError("Password too short") return v(d) ORM Mode
Section titled “(d) ORM Mode”For converting SQLAlchemy ORM objects → Pydantic models:
class UserOut(BaseModel): id: int name: str
class Config: orm_mode = True6. How FastAPI Uses Pydantic Under the Hood
Section titled “6. How FastAPI Uses Pydantic Under the Hood”Request cycle:
Incoming JSON → Pydantic model validation → Endpoint logic → Pydantic response model → JSON responseSo Pydantic acts as the bridge between raw requests/responses and Python objects.
7. Key Benefits in FastAPI
Section titled “7. Key Benefits in FastAPI”- ✅ No need to write manual validation code
- ✅ Automatic error responses (422 Unprocessable Entity)
- ✅ Data integrity & security
- ✅ Auto-generated OpenAPI docs
- ✅ Works with async + sync seamlessly