Skip to content

Fast Pydantic

  • 👉 Without Pydantic, FastAPI would just be another web framework.

  • It’s the reason why FastAPI is so strict, fast, and developer-friendly.

  • 👉 Pydantic = Validates & parses data.

  • 👉 Depends = Injects reusable logic/resources.

  • Pydantic is a Python library for data validation and settings management using Python type hints.

  • It ensures data coming into your FastAPI app is:

    • Valid (correct type, format, constraints).
    • Cleaned (converted to the right type).
    • Documented (auto-generated OpenAPI schema).

👉 FastAPI internally uses Pydantic models to define request bodies, query params, and response schemas.


  • Validation: Rejects invalid requests automatically.
  • Serialization: Converts DB objects → JSON.
  • Docs Generation: OpenAPI/Swagger knows field types.
  • Type Safety: Encourages clean, explicit contracts.

from fastapi import FastAPI
from pydantic import BaseModel
app = FastAPI()
class Item(BaseModel):
name: str
price: float
in_stock: bool = True
@app.post("/items/")
def create_item(item: Item):
return {"item": item.dict()}
{
"name": "Laptop",
"price": 1200.5
}

✅ Response:

{
"item": { "name": "Laptop", "price": 1200.5, "in_stock": true }
}
{
"name": "Laptop",
"price": "not-a-number"
}

❌ FastAPI automatically returns:

{
"detail": [
{
"loc": ["body", "item", "price"],
"msg": "value is not a valid float",
"type": "type_error.float"
}
]
}

from typing import List
@app.get("/items/", response_model=List[Item])
def get_items():
return [
{"name": "Phone", "price": 500, "in_stock": True},
{"name": "Tablet", "price": 800, "in_stock": False}
]

✅ Even if your DB returned extra fields, FastAPI trims output based on the Pydantic response model.


5. Advanced Features of Pydantic in FastAPI

Section titled “5. Advanced Features of Pydantic in FastAPI”
from pydantic import BaseModel, Field
class Product(BaseModel):
name: str = Field(..., min_length=3, max_length=50)
price: float = Field(..., gt=0, description="Price must be > 0")
  • min_length, max_length, gt (greater than), etc.
  • description auto-shows in Swagger docs.

class Category(BaseModel):
id: int
name: str
class Product(BaseModel):
name: str
price: float
category: Category

✅ Allows structured, complex JSON inputs.


from pydantic import validator
class User(BaseModel):
username: str
password: str
@validator("password")
def validate_password(cls, v):
if len(v) < 6:
raise ValueError("Password too short")
return v

For converting SQLAlchemy ORM objects → Pydantic models:

class UserOut(BaseModel):
id: int
name: str
class Config:
orm_mode = True

6. How FastAPI Uses Pydantic Under the Hood

Section titled “6. How FastAPI Uses Pydantic Under the Hood”

Request cycle:

Incoming JSON → Pydantic model validation → Endpoint logic → Pydantic response model → JSON response

So Pydantic acts as the bridge between raw requests/responses and Python objects.


  • ✅ No need to write manual validation code
  • ✅ Automatic error responses (422 Unprocessable Entity)
  • ✅ Data integrity & security
  • ✅ Auto-generated OpenAPI docs
  • ✅ Works with async + sync seamlessly